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Abstract
Accurate and reliable predictions of biomass yield are important for decision-making in 
pasture management including fertilization, pest control, irrigation, grazing, and mow-
ing. The possibilities for monitoring pasture growth and developing prediction models 
have greatly been expanded by advances in machine learning (ML) using optical sensing 
data. To facilitate the development of prediction models, an understanding of how ML 
techniques affect performance is needed. Therefore, this review examines the adoption 
of ML-based optical sensing for predicting the biomass yield of managed grasslands. We 
carried out a systematic search for English-language journal articles published between 
2015-01-01 and 2022-10-26. Three coders screened 593 unique records of which 91 were 
forwarded to the full-text assessment. Forty-three studies were eligible for inclusion. We 
determined the adoption of techniques for collecting input data, preprocessing, and train-
ing prediction models, and evaluating their performance. The results show (1) a broad 
array of vegetation indices and spectral bands obtained from various optical sensors, (2) 
an emphasis focus on feature selection to cope with high-dimensional sensor data, (3) a 
low reporting rate of unitless performance metrics other than R2, (4) higher variability of 
R2 for models trained on sensor data of larger distance from the pasture sward, and (5) the 
need for greater comparability of study designs and results. We submit recommendations 
for future research and enhanced reporting that can help reduce barriers to the integration 
of evidence from studies.

Keywords Biomass · Feature selection · Grassland · Herbage · Random forests · 
Remote sensing

Introduction

Pastures account for about 70% of the world’s agricultural land (Squires et al., 2018) and 
provide essential sources of high-quality forage for ruminants (Bouwman et al., 2005). 
Thus, pastures assume a key role in nourishing a growing global population with dairy and 
meat products (Henchion et al., 2017; Tripathi et al., 2018). Moreover, grasslands fulfill eco-
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system services such as carbon storage and habitat conservation; hence, they help mitigate 
climate change and preserve biodiversity (O’Mara, 2012; Zhao et al., 2020).

Pasture management is being challenged by increasing competition between forage and 
energy crops (Donnison & Fraser, 2016), land sealing due to infrastructure and housing, 
greater yield volatility due to climate change (Hopkins & Del Prado, 2007), and stronger 
constraints on fertilization (Buckley et al., 2016). Against this backdrop, accurate and reli-
able information about future pasture yields gains importance for agricultural management. 
These yield predictions can support the decision-making processes regarding fertilization, 
pest control, irrigation, stocking rates, and mowing. Overall, accurate yield predictions 
allow more efficient use of all inputs, resulting in less environmental impact and greater 
profits for farmers (Hedley, 2015; Kent Shannon et al., 2018).

Machine learning-based optical sensing has become the prevailing approach to predictive 
modeling for pasture yields. In this approach, past observational data is analyzed to learn a 
mapping function between pasture characteristics and biomass at harvest. This function is 
used to predict the biomass for pasture characteristics obtained via sensors at a future time. 
Predictive modeling using machine learning (ML) takes advantage of significant improve-
ments in technology for optical sensing (Adão et al., 2017; Zeng et al., 2020), enhanced 
availability of field data at different levels of granularity (Murphy et al., 2021), and greater 
performance of the underlying ML algorithms. The importance of MLbased optical sensing 
for pasture yield prediction is reflected in the high number of studies in recent years.

Evidence for the effectiveness of ML-based predictive modeling has increased. The 
evidence concerns different grass species, such as perennial ryegrass (Lolium perenne) 
(Nguyen et al., 2022), signalgrass (Brachiaria) (Bretas et al., 2021), and clover (Trifolium 
pratense) (Li et al., 2021), and different types of optical sensors, including portable spectro-
radiometers (Murphy et al., 2022), sensors mounted on unmanned aerial vehicles (UAVs) 
(van der Merwe et al., 2020), and carried by satellites (Bretas et al., 2021). This variety 
converges with a broad set of ML techniques that developers can adopt. Developers must 
select techniques for the transformation of input data into features, the training of prediction 
models from past observations of input data and biomass, and the evaluation of the trained 
models on new observations. To inform these decisions on the development of prediction 
models, insights into the effectiveness of specific ML techniques are required.

Notwithstanding the increased evidence base, the understanding of the effectiveness of 
specific ML techniques is still limited. Regarding the types of optical sensor data, a previous 
review found better performance for prediction models that were trained on in-field imagery 
compared to models that processed satellite data (Morais et al., 2021). However, about half 
of the included studies examined non-managed grasslands, such as steppe, semiarid grass-
land, bunchgrass, and shrub on drylands; hence, the finding cannot necessarily be general-
ized to prediction models for pasture yield. Two literature reviews focused on UAVs so that 
the results do not extend to models trained on data from field spectroradiometers and satel-
lites (Bazzo et al., 2023; Lyu et al., 2022). Another review had a broader scope by including 
studies that collected non-optical sensor data (Murphy et al., 2021). One related review only 
provided aggregated information but no results at the study level (Subhashree et al., 2023).

Collectively, the burgeoning field of pasture yield prediction using ML-based optical 
sensing calls for the assessment of current evidence to facilitate the development of predic-
tion models. To address this need, we conducted a systematic review that is conceptually 
guided by the ML process. Specifically, the objectives are to: (1) determine the adoption of 
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ML-based optical sensing in previous research examining yield prediction for pasture man-
agement, (2) collate the performance results, and (3) propose recommendations for future 
research and the reporting of studies.

Method

We conducted a systematic review of studies and report the results based on the PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, where 
applicable (Moher et al., 2009). To ensure the reliability of the coding, three authors inde-
pendently screened the identified records, assessed the full-text articles for eligibility, and 
extracted data from the selected studies.

Eligibility criteria

We included studies that applied machine learning on data obtained from optical sensing 
for predicting the yield of pastures, with yield defined as the current or future biomass of a 
specific pasture area, such as a plot, paddock, or field. The studies were required to report 
empirical results from the processing of real-world data. We focused on studies in refer-
eed journals and written in English. The time interval of the past eight years (2015-01-01 
through 2022-10-26) allowed us to assess studies that benefit from advances in ML and opti-
cal sensors in recent years, and thus have high relevance for research and practice. Studies 
were excluded if any of the following criteria were met: (1) dependent variable not related 
to a managed pasture but a different crop, nature conservation, biodiversity, or grassland 
coverage; (2) no prediction of yield but a different variable (e.g., nutrients, sward composi-
tion); (3) no predictive modeling but explanatory modeling or conceptual research; (4) no 
use of machine learning; (5) no processing of real-world data; and (6) no use of data from 
optical sensing (e.g., exclusively weather data).

Information sources and search

We identified articles through an automated search of journal articles published between 
January 1, 2015, and October 26, 2022. The search used the electronic database Scopus, 
which is the largest database of scientific literature and has larger coverage of peer-reviewed 
literature than the Web of Science (Mongeon & Paul-Hus, 2016; Singh et al., 2021; Thelwall 
& Sud, 2022). We designed the search query to cover the wide variety of terminology found 
in the literature. The search query had four concatenated components for pasture, yield, pre-
diction, and machine learning. The pasture was represented as follows: (pasture* OR forage* 
OR grassland* OR *grass OR herbage* OR meadow*). Yield was covered by the following 
term: (yield OR biomass OR agb OR “herbage mass” OR “pasture mass” OR “grassland 
production” OR “forage production” OR quantity). The prediction component included dif-
ferent words as follows: (predict* OR assess* OR estimat* OR forecast*). Machine learning 
was represented by abstract terms and specific algorithms as follows: (“machine learning” 
OR “deep learning” OR “support vector” OR “random forest*” OR “neural network” OR 
“partial least square*” OR “predict* model*” OR “regression model”).
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Study selection

We ensured the reliability of the study selection through the following procedure. We defined 
a codebook that provided the eligibility and exclusion criteria. The codebook was used in 
the screening phase by three authors who independently coded the first nine articles based 
on the title, abstract, and keywords. The coders met to compare their codes and resolve any 
conflicting codes through discussion. The coding commenced with the remaining articles. 
Once all articles were coded and discussed, we downloaded the full texts of the articles that 
passed the screening. The assessment of the full texts employed the same codebook and was 
organized in two rounds of coding and resolving disagreements.

Data collection process

The data collection for the included studies was carried out by the same three authors, who 
independently filled in an Excel spreadsheet form for 96 data items per article. The data 
items operationalize the conceptual framework described in the following section. All indi-
vidual codes were compared in two rounds in which disagreements were resolved through 
discussion and consensus.

Data items

Figure 1 illustrates the conceptual model of the review based on the process of predictive 
modeling using machine learning. This process begins with the prediction problem and ends 
with the evaluated prediction model. The figure also denotes the principal data items that we 
collected during the review.

Forecasting the yield of pastures based on optical sensor data recorded during the veg-
etation period represents the prediction problem. Plant species are pasture plants that are 
cultivated and constitute the sward composition for which the prediction is made. Grazing 
indicates whether the pasture is grazed by animals or managed by machinery for forage con-
servation. Country denotes the location where the study was conducted. The process shown 
in Fig. 1 defines four phases, which we discuss in the following paragraphs.

Data collection includes the creation of a data set by recording prediction-relevant data 
of the pasture vegetation and the observed yield at the time of harvest. Study conditions 
describe the number of fields, sample plots, and seasons for which these data were recorded. 
A sample plot is defined as the smallest partial area from which an independent sample of 
biomass is collected by cutting. Studies vary in the number of plots per field as well as in 
the size of plots, which usually range from 0.25 m2 to a handful of square meters. The input 
data can be classified into the following groups: vegetation indices calculated from spectral 

Fig. 1 Process and principal data items for pasture yield prediction
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measurements (Xue & Su, 2017); spectral bands taken from imagery; textural features as 
properties of the surface calculated based on the Grey Level Co-occurrence Matrix (GLCM) 
method (Haralick et al., 1973); sward height above the ground; weather data (e.g., precipita-
tion, temperature) (Yao et al., 2022); site data (e.g., soil type, angle); and agronomic data 
(e.g., fertilizer input, irrigation, grazing rotation, stocking rates, species selection, and pest 
and weed control) (Smit et al., 2008). Another classification of input data is based on the 
dichotomy of biotic and abiotic factors affecting plant growth (Lange et al., 2014). Biotic 
factors refer to living organisms, such as grazing animals, insects, microorganisms, and 
other plants that influence pasture production (Kallenbach, 2015; Klaus et al., 2013). Abi-
otic factors encompass non-living elements, such as soil composition, temperature, water 
supply, and global radiation that determine plant growth (Baldocchi et al., 2004; Sorkau et 
al., 2018). A sound knowledge of biotic factors, abiotic factors, and their complex inter-
actions helps to develop effective prediction models, although the conceptual differences 
between explanatory and predictive modeling need to be considered (Shmueli, 2010).

Optical sensors for gathering input data can be categorized as follows. In-field sensors 
operate near the ground and foremost include field spectroradiometers for obtaining reflec-
tance data, such as vegetation indices and chlorophyll content of plants, but also laser scan-
ners, such as LiDAR (Light Detection and Ranging), to create a 3D map of the pasture. 
Aerial sensors are mounted on an aircraft or unmanned aerial vehicle (UAV) to collect high-
resolution imagery from a low flying height (Feng et al., 2021); they include hyperspectral, 
multispectral, and RGB cameras as well as thermal sensors and LiDAR sensors. Satellite 
remote sensing enables to record vegetation reflectance from the orbit.

Data preprocessing is the second phase, which produces so-called features from the input 
data. Features represent characteristics of the empirical phenomenon on which a prediction 
model can be learned. Including all input data as features in the prediction model incurs the 
risk of learning from noise in the data and lacking in prediction performance. For this rea-
son, feature selection provides different techniques for identifying smaller sets of features. 
The techniques are usually grouped into three categories (Chandrashekar & Sahin, 2014): 
(1) Filter-based techniques select features based on a metric calculated for each feature. For 
instance, correlation analysis can identify pairs of highly correlated features from which 
only one feature will be retained. Another technique is principal component analysis (PCA), 
which transforms a set of strongly correlated features into a smaller set. (2) Wrapper-based 
techniques remove one or more features from the initial set by iteratively training and evalu-
ating alternative prediction models. For instance, backward elimination starts with the full 
set of features and removes features based on pvalues passing a specific threshold (in case 
of multiple linear regression). (3) Embedded techniques are specific to an ML algorithm. 
One example is Random Forests feature selection, which calculates the so-called feature 
importance metric and then removes features that do not pass a threshold for the metric.

The third phase is model training in which example observations are used to learn a func-
tion that best maps a set of feature values to the corresponding observed yield; these exam-
ples are also referred to as input-output pairs. For estimating the mapping function, the field 
of supervised machine learning provides a large variety of ML algorithms. Frequently used 
algorithms for predicting pasture yields include Random Forests (RF) (Ho, 1995), Artificial 
Neural Networks (ANN) (Bishop, 2006), and Support Vector Regression (SVR) (Drucker et 
al., 1996) but also different types of linear regression, such as ordinary least squares (OLS) 
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and partial least squares (PLS) regression. All these algorithms require a sufficiently large 
training set that includes a number of examples.

Model evaluation is the final phase, which assesses the prediction performance of a 
trained model. Because of the many design alternatives to choose from in the preceding 
phases, developers usually evaluate alternative prediction models through experiments in 
which one or more factors are manipulated. By conducting factorial experiments, devel-
opers can devise a variety of experimental conditions, gain insights into how the factors 
affect performance, and eventually identify the best-performing model. Irrespective of the 
experimental design, evaluation calls for testing the prediction model on new observations, 
thus observations that were not included in the training phase. The evaluation can be accom-
plished using cross-validation, a test set, or both techniques. In cross-validation (CV), the 
data set is iteratively divided into subsets for training and testing. For instance, k-fold CV 
divides the data set into k subsets (folds) of equal size, trains a model for each combination 
of k-1 folds, evaluates the model on the left-out fold, and reports the mean performance for 
all k models. In other words, in each iteration, one fold is left out of the training set. Another 
type of CV is leave-one-out, which trains the model using all but one observation and tests 
the model on the left-out observation. The training and testing must be repeated n times, 
with n standing for the total number of observations. Different from CV, a test set indicates 
a technique that uses a separate data set of new observations. Either technique can apply 
performance metrics to quantify the accuracy of predicted vis-á-vis observed yields. Met-
rics for yield predictions include, for instance, the coefficient of determination (R2), the root 
mean square error (RMSE), the normalized RMSE (NRMSE), and the mean absolute error 
(MAE). The report on prediction performance can be supplemented by information on so-
called feature importance, i.e., a quantitative assessment of the extent to which individual 
features have contributed to the prediction performance. Various techniques are available 
for measuring importance, for example, by indicating how a specific performance metric 
would change in absolute or relative terms if the feature in question were removed. Other 
techniques specify importance as a percentage value, summing to 100% for all features. 
Such information is typically presented in column charts or placed in tabular appendices.

Results

Study selection

Figure 2 shows the PRISMA flow chart of study selection. A total of 591 records were 
identified through database searching. We considered two additional studies that reported 
prediction models for pasture yield using optical sensing; the studies were listed in Scopus, 
but their records were not automatically retrieved. Of the 91 articles that were forwarded to 
the full-text assessment, 43 articles fulfilled the eligibility criteria, and these studies were 
included in the review.

Table 1 shows an overview of the included studies. The most frequently studied plants 
were perennial ryegrass (14 studies, Lolium perenne), clover species (8, Trifolium), signal-
grass (5, Brachiaria), and timothy (4, Phleum pratense). Twenty-five of the pastures were 
mechanically harvested, and the remaining pastures were grazed by animals. Twenty-two 
studies were conducted in Europe, nine in Australia, six in South America, and four in North 
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America, whereas only each one study was carried out in Africa and Asia. Predictions were 
always made right before harvest or very near to that day, except for three studies that used 
prediction horizons of 13 days (Schwieder et al., 2020), 38 days (Li et al., 2021), and 152 
days (Hamada et al., 2021), respectively.

Data collection

Table 2 provides the number of fields, sample plots, and seasons, followed by the differ-
ent types of input data. Almost half of the studies were limited to data from a single field. 
The number of sample plots ranged from only two to more than one thousand (mean: 114; 
median: 54; n = 35). Two-thirds of the studies collected data in one growing season, and 
every fifth study covered two seasons. Two studies even covered eight (Jaberalansar et al., 
2017) and twelve seasons (Ali et al., 2017), respectively. Twothirds of the studies were 
conducted at research facilities and one-third on fields operated by farmers (not tabulated).

Vegetation indices were processed as input data in 29 studies. The number of VIs spanned 
from one index in four studies to more than 20 indices in eight studies. Sward height was 
used in 19 studies and it was either measured by UAV (13 studies), rising plate meter (3), 
LiDAR (1), meter ruler (1), or satellite (1). Nineteen studies processed spectral bands, which 
exhibited large variability between 2 and 2150 different bands. In three studies, vegetation 
indices were complemented with textural features. All other types of input data played a 

Fig. 2 PRISMA flow chart
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minor role. Specifically, five studies used weather data, two studies considered site data 
(e.g., soil type, elevation, slope, and aspect), and only one study integrated fertilizer input as 
agronomic data (Franceschini et al., 2022). No study learned a model based on biotic data.

Table 3 summarizes the adoption of the different types of optical sensors. Fourteen stud-
ies obtained data from in-field sensors, which included spectroradiometers (12 studies). 
Twenty-four studies collected input data from cameras mounted on aerial vehicles; the 
cameras recorded RGB images (11 studies), multispectral images (13), and hyperspectral 
images (5). Thirteen studies retrieved image data from satellites, including Sentinel (9 stud-
ies), MODIS (3), PlanetScope (2), Landsat (1), PlanetDove (1), and WorldView (1).

Data preprocessing

Table 4 reports the adoption of feature selection techniques and provides the number of fea-
tures per study. Feature selection was present in 24 studies, and the most frequent techniques 
were correlation analysis (8 studies), PCA (8), and stepwise regression (4). The number of 
features ranged between 1 and 101, although eight studies did not report this information. 
On one hand, four studies spared out feature selection but collected sensor data for a single 
feature. On the other hand, 18 studies trained models from at least 10 different features.

Model training

Table 5 provides information about the adoption of 16 different ML algorithms. The most 
frequent algorithms were Random Forests (20 studies), PLS regression (13), OLS regres-
sion using a single predictor (10) or multiple predictors (8), and Support Vector Regression 
(8). The size of the training set was stated in 41 studies, which either reported the number 
of examples, a percentage value of the examples used, or both types of information (not 
tabulated). In 10 studies, the prediction models were trained on less than 100 examples.

Model evaluation

Experimental manipulation

Table 6 shows the frequency of each manipulated factor. The most frequent factors were fea-
ture set (19 studies) and ML algorithm (17). The former studies compared the performance 
of prediction models using different combinations of features, such as vegetation indices, 
spectral bands, sward height, and weather features. Nine studies investigated alternative 
sensors (e.g., UAV versus satellite). Six further factors were only examined in one study 
each. The number of manipulated factors per study was either one (16 studies), two (15), or 
three (2), whereas no manipulation was present in ten studies.

Model assessment

Table 7 shows the adoption of cross-validation and test set as techniques for model assess-
ment. Twelve studies were limited to cross-validation, and another 13 studies only used a 
test set including new observations. The remaining 18 studies applied both techniques.
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Table 3 Optical sensors used in the included studies (N = 43)
Study In-field Aerial Satellite
Ali et al. (2017) – – MODIS
Askari et al. (2019) Spectroradiometer Multispectral Sentinel-2
Barnetson et al. (2021) – RGB PlanetDove
Borra-Serrano et al. (2019) – RGB –
Bretas et al. (2021) – – Landsat-8, Sentinel-2
Chen et al. (2021) – – Sentinel-2
Chiarito et al. (2021) Spectroradiometer – Sentinel-1
Da Silva et al. (2022) – – MODIS, Sentinel-2
Rosa et al. (2021) – Multispectral –
Dos Reis et al. (2020) – – PlanetScope
Franceschini et al. (2022) – Hyperspectral, RGB –
Freitas et al. (2022) – Multispectral –
Geipel et al. (2021) – Hyperspectral –
Grüner et al. (2019) – RGB –
Grüner et al. (2020) – Multispectral –
Hamada et al. (2021) Spectroradiometer – Sentinel-2
Jaberalansar et al. (2017) – – MODIS
Jackman et al. (2021) Spectroradiometer – –
Karunaratne et al. (2020) – Multispectral –
Li et al. (2021) – Multispectral –
Lussem et al. (2020) – RGB –
Lussem et al. (2022) – Multispectral, RGB –
Mundava et al. (2015) Spectroradiometer – –
Murphy et al. (2022) Spectroradiometer – –
Näsi et al. (2018) – Hyperspectral, RGB –
Nguyen et al. (2022) LiDAR vehicle Multispectral –
de Oliveira et al. (2020) – Hyperspectral, RGB –
de Oliveira et al. (2021) – RGB –
Pereira et al. (2022) – Multispectral PlanetScope, Sentinel-2
Pranga et al. (2021) – Multispectral, RGB –
Raab et al. (2020) – – Sentinel-1/2
Schucknecht et al. (2022) – Multispectral –
Schulze-Brüninghoff et al. (2021) Laser scanner Hyperspectral –
Schwieder et al. (2020) Spectroradiometer – Sentinel-2
Sibanda et al. (2017) – – WorldView-3
Sun et al. (2022) Spectroradiometer – –
Théau et al. (2021) – Multispectral –
Thomson et al. (2020) Spectroradiometer – –
Togeiro de Alckmin et al. (2021) Spectroradiometer – –
Togeiro de Alckmin et al. (2022) Spectroradiometer Multispectral –
van der Merwe et al. (2020) – RGB –
Zeng and Chen (2018) Spectroradiometer – –
Zhou et al. (2019) Spectroradiometer – –
Note. RGB = red, green, and blue

1 3



Precision Agriculture

Table 4 Feature selection techniques and number of features in the included studies (N = 43)
Study Technique Number of 

features
Ali et al. (2017) PCA 5
Askari et al. (2019) OLS: correlations, stepwise regression; PLS: 

Marten’s test
OLS: 2–9; 
PLS: 4–8

Barnetson et al. (2021) – NR
Borra-Serrano et al. (2019) OLS: correlation; PLS: separate PCA 5
Bretas et al. (2021) Stepwise regression (backward elimination) OLS: 6; RF: 9
Chen et al. (2021) – 19
Chiarito et al. (2021) Genetic algorithm 13
Da Silva et al. (2022) – 1
Rosa et al. (2021) – 4–8
Dos Reis et al. (2020) RReliefF 24
Franceschini et al. (2022) Variable Importance in Projection 101
Freitas et al. (2022) Correlations; RReliefF 10
Geipel et al. (2021) Built-in PCA NR
Grüner et al. (2019) – 1
Grüner et al. (2020) – 49
Hamada et al. (2021) Correlations 1
Jaberalansar et al. (2017) Correlations 16
Jackman et al. (2021) PCA, genetic algorithm 12
Karunaratne et al. (2020) – 30
Li et al. (2021) – NR
Lussem et al. (2020) – 1
Lussem et al. (2022) – 35
Mundava et al. (2015) Stepwise regression (forward selection) 3
Murphy et al. (2022) PCA NR
Näsi et al. (2018) – 49
Nguyen et al. (2022) Correlations; branch-and-bound algorithm 2; 3; 4
de Oliveira et al. (2020) – 3–38
de Oliveira et al. (2021) – NR
Pereira et al. (2022) – 3–60
Pranga et al. (2021) – 27
Raab et al. (2020) Permutation-based selection 13
Schucknecht et al. (2022) – 26
Schulze-Brüninghoff et al. (2021) Variable Selection using Random Forests 29
Schwieder et al. (2020) – 9
Sibanda et al. (2017) Sparse PLS regression 19
Sun et al. (2022) PLS: Variable Importance in Projection; SVR: – PLS: 10; 

SVR: NR
Théau et al. (2021) Coefficient of variation; simple linear regression NR
Thomson et al. (2020) PCA, spectral analysis 11
Togeiro de Alckmin et al. (2021) Correlations; recursive elimination 20
Togeiro de Alckmin et al. (2022) PCA 4
van der Merwe et al. (2020) – 1
Zeng and Chen (2018) PLS: correlations; MLR: stepwise (backward 

elimination)
PLS: 2150, 
MLR: 7

Zhou et al. (2019) PLS: built-in PCA; SVR: – NR
Note. NR = not reported. PCA = principal component analysis. OLS = ordinal least squares. PLS = partial 
least squares. RF = Random Forests. RRreliefF = regressional ReliefF algorithm. SVR = Support Vector 
Regression
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We note that the application and reporting of cross-validation exhibit large variation 
by leaving out one fold (19 studies), one example (7), or one site (1) in the training phase, 
whereas four studies provided no information in that respect. Regarding the test set, 29 
of the 31 studies reported its size as a percentage of the whole data set. The number of 
examples ranged between 10 and 433. Six studies had very small test sets with at most 24 
examples, but ten studies had much larger test sets with more than one hundred examples.

Table 5 Machine-learning algorithms in the included studies (N = 43)
Algorithm No. Studies
Random Forests 20 Borra-Serrano et al. (2019); Bretas et al. (2021); Da Silva et al. (2022); 

Rosa et al. (2021); Dos Reis et al. (2020); Freitas et al. (2022); Grüner 
et al. (2019); Karunaratne et al. (2020); Li et al. (2021); Lussem et al. 
(2022); Näsi et al. (2018); de Oliveira et al. (2020); Pereira et al. (2022); 
Pranga et al. (2021); Raab et al. (2020); Schucknecht et al. (2022); 
Schulze-Brüninghoff et al. (2021); Schwieder et al. (2020); Togeiro de 
Alckmin et al. (2021); Togeiro de Alckmin et al. (2022)

Partial least squares 
regression

13 Askari et al. (2019); Borra-Serrano et al. (2019); Franceschini et al. 
(2022); Geipel et al. (2021); Jackman et al. (2021); Lussem et al. (2022); 
Murphy et al. (2022); Pranga et al. (2021); Sibanda et al. (2017); Sun et al. 
(2022); Thomson et al. (2020); Zeng and Chen (2018); Zhou et al. (2019)

Simple linear 
regression

10 Borra-Serrano et al. (2019); Bretas et al. (2021); Geipel et al. (2021); 
Grüner et al. (2019); Hamada et al. (2021); Lussem et al. (2020); Lussem 
et al. (2022); Pranga et al. (2021); Togeiro de Alckmin et al. (2021); van 
der Merwe et al. (2020)

Multiple linear 
regression

8 Ali et al. (2017); Askari et al. (2019); Borra-Serrano et al. (2019); Bretas 
et al. (2021); Grüner et al. (2020); Mundava et al. (2015); Nguyen et al. 
(2022); de Oliveira et al. (2020)

Support Vector 
Regression

8 Chiarito et al. (2021); Li et al. (2021); Lussem et al. (2022); Pranga et al. 
(2021); Sun et al. (2022); Thomson et al. (2020); Togeiro de Alckmin et 
al. (2021); Zhou et al. (2019)

Artificial Neural 
Networks

4 Ali et al. (2017); Barnetson et al. (2021); Chen et al. (2021); Li et al. 
(2021)

Gradient Boosting 3 Dos Reis et al. (2020); Togeiro de Alckmin et al. (2022); Schucknecht et 
al. (2022)

Ensemble learner 2 Thomson et al. (2020); Togeiro de Alckmin et al. (2021)
Bagged Trees 1 Togeiro de Alckmin et al. (2022)
Classification and 
Regression Trees

1 Togeiro de Alckmin et al. (2022)

Convolutional Neu-
ral Networks

1 de Oliveira et al. (2021)

Cubist 1 Togeiro de Alckmin et al. (2022)
General Additive 
Modeling

1 Rosa et al. (2021)

Multivariate adap-
tive regression 
spline

1 Togeiro de Alckmin et al. (2021)

Nonlinear regression 1 Théau et al. (2021)
Nonparametric mul-
tiplicative regression

1 Jaberalansar et al. (2017)
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Performance metrics

Table 8 reveals that R2 was reported in all but five studies. Thirty studies provided the root 
mean square error in kg per ha. Unitless normalizations of the RMSE were present in 25 
studies. This normalization was either based on the mean (11 studies), range (4), standard 
deviation (2), and interquartile range (1) of the observed yield, or its specification was miss-
ing (7).

Performance by types of optical sensors

The high adoption rate of the unitless R2 metric allowed us to collate performance results 
as shown in Fig. 3, which groups 41 prediction models by the types of optical sensors used. 
The R2 ranged between 0.42 and 0.90 in the satellite group, between 0.50 and 0.94 in the 
aerial sensors group, and between 0.62 and 0.92 in the in-field sensors group. The range was 
even smaller for the few prediction models that complemented in-field data by satellite data 
(0.71 to 0.90) and UAV data (0.81 to 0.92), respectively. Similarly, the mean performance 
in the in-field (0.79) and aerial groups (0.77) was higher than for the satellite (0.67) group. 
Two studies that processed data from aerial sensors and satellites at the same time reported 
R2 values of 0.70 (Pereira et al., 2022) and 0.72 (Barnetson et al., 2021), respectively (not 
shown in Fig. 3).

Table 6 Manipulated factors in the included studies (N = 43)
Factor No. Studies
Feature set 19 Borra-Serrano et al. (2019); Chen et al. (2021); Rosa et al. (2021); Dos Reis et 

al. (2020); Freitas et al. (2022); Grüner et al. (2020); Jaberalansar et al. (2017); 
Karunaratne et al. (2020); Lussem et al. (2020); Lussem et al. (2022); Näsi et 
al. (2018); Nguyen et al. (2022); de Oliveira et al. (2020); Pereira et al. (2022); 
Pranga et al. (2021); Schucknecht et al. (2022); Sibanda et al. (2017); Sun et al. 
(2022); Togeiro de Alckmin et al. (2021)

ML algorithm 17 Ali et al. (2017); Askari et al. (2019); Borra-Serrano et al. (2019); Bretas et al. 
(2021); Rosa et al. (2021); Dos Reis et al. (2020); Grüner et al. (2020); Li et 
al. (2021); Lussem et al. (2022); de Oliveira et al. (2020); Pranga et al. (2021); 
Schucknecht et al. (2022); Sun et al. (2022); Thomson et al. (2020); Togeiro de 
Alckmin et al. (2021); Togeiro de Alckmin et al. (2022); Zhou et al. (2019)

Sensor 9 Askari et al. (2019); Barnetson et al. (2021); Da Silva et al. (2022); Grüner et 
al. (2019); Pereira et al. (2022); Raab et al. (2020); Schucknecht et al. (2022); 
Schulze-Brüninghoff et al. (2021); Togeiro de Alckmin et al. (2022)

Flying altitude 2 Karunaratne et al. (2020); Näsi et al. (2018)
CNN 
architecture

1 de Oliveira et al. (2021)

Feature selection 1 Freitas et al. (2022)
Prediction 
horizon

1 Li et al. (2021)

Test set 
sampling

1 Franceschini et al. (2022)

Training set ratio 1 Rosa et al. (2021)
None 10 Chiarito et al. (2021); Geipel et al. (2021); Hamada et al. (2021); Jackman et al. 

(2021); Mundava et al. (2015); Murphy et al. (2022); Schwieder et al. (2020); 
Théau et al. (2021); van der Merwe et al. (2020); Zeng and Chen (2018)

Note. CNN = Convolutional Neural Networks
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Table 7 Model assessment in the included studies (N = 43)
Study Cross-validation Test set:

Percentage
Test set:
Examples

Ali et al. (2017) – 30 > 180*
Askari et al. (2019) Not specified 30, 33 28, 37, 53
Barnetson et al. (2021) – 30 19, 30
Borra-Serrano et al. (2019) – 30 46*
Bretas et al. (2021) 5-fold 20 24
Chen et al. (2021) – 25 433
Chiarito et al. (2021) 5-fold 20 12*
Da Silva et al. (2022) 5-fold 30 99
Rosa et al. (2021) – 30, 50, 70 151, 252, 

420
Dos Reis et al. (2020) 5-fold 30 104*
Franceschini et al. (2022) 3-fold (100 iterations) 30 58
Freitas et al. (2022) 10-fold 30 54
Geipel et al. (2021) – 50 353
Grüner et al. (2019) – 25 45
Grüner et al. (2020) 4-fold (100 iterations) – –
Hamada et al. (2021) – 25 (31 runs) 21
Jaberalansar et al. (2017) Not specified – –
Jackman et al. (2021) 10-fold (5 iterations) – –
Karunaratne et al. (2020) 10-fold 20 20
Li et al. (2021) Leave-one-out (36) 50 36
Lussem et al. (2020) Leave-one-out (140) – –
Lussem et al. (2022) 10-fold (5 iterations) – –
Mundava et al. (2015) Leave-one-out (NR); 

Leave-one-site-out
– –

Murphy et al. (2022) 4-fold 11 197
Näsi et al. (2018) Leave-one-out (32) – –
Nguyen et al. (2022) 3 to 30 folds; Leave-one-out 

(368)
40 147*

de Oliveira et al. (2020) Leave-one-out (NR) NR 10
de Oliveira et al. (2021) 10-fold – –
Pereira et al. (2022) 10-fold 30 34*
Pranga et al. (2021) 10-fold – –
Raab et al. (2020) 10-fold (1000 iterations) – –
Schucknecht et al. (2022) 6-fold (10 iterations) – –
Schulze-Brüninghoff et al. (2021) – 15 (100 runs) 33
Schwieder et al. (2020) – 30 (100 runs) 13
Sibanda et al. (2017) Leave-one-out (1080) – –
Sun et al. (2022) 10-fold 33 78
Théau et al. (2021) – 50 50
Thomson et al. (2020) 20-fold 25 51
Togeiro de Alckmin et al. (2021) 10-fold (5 iterations) 30 270
Togeiro de Alckmin et al. (2022) Not specified 38 300
van der Merwe et al. (2020) – 26 19
Zeng and Chen (2018) Not specified 35 35
Zhou et al. (2019) – 33 126
Note. NR = not reported. * = no exact figure reported
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Table 8 Performance metrics reported in the included studies (N = 43)
Study R2 RMSE NRMSE MAE Other
Ali et al. (2017) Yes – – – –
Askari et al. (2019) Yes Yes – Yes Yes
Barnetson et al. (2021) Yes – – Yes –
Borra-Serrano et al. (2019) Yes Yes Yes5 – Yes
Bretas et al. (2021) Yes Yes – – –
Chen et al. (2021) Yes Yes – Yes –
Chiarito et al. (2021) Yes Yes – – –
Da Silva et al. (2022) Yes – Yes5 – –
Rosa et al. (2021) Yes – Yes1 – Yes
Dos Reis et al. (2020) Yes Yes Yes5 – –
Franceschini et al. (2022) Yes Yes Yes4 – –
Freitas et al. (2022) Yes Yes Yes5 – –
Geipel et al. (2021) Yes Yes Yes5 – –
Grüner et al. (2019) Yes Yes Yes1 – Yes
Grüner et al. (2020) Yes Yes Yes2 – –
Hamada et al. (2021) Yes Yes – Yes –
Jaberalansar et al. (2017) Yes Yes Yes3 Yes –
Jackman et al. (2021) Yes – Yes1 – –
Karunaratne et al. (2020) Yes Yes Yes1 – Yes
Li et al. (2021) Yes – Yes2 – –
Lussem et al. (2020) Yes Yes – – –
Lussem et al. (2022) Yes Yes Yes5 – –
Mundava et al. (2015) – – – – Yes
Murphy et al. (2022) Yes – – – Yes
Näsi et al. (2018) – Yes Yes5 – Yes
Nguyen et al. (2022) Yes Yes – Yes Yes
de Oliveira et al. (2020) – Yes Yes1 – –
de Oliveira et al. (2021) – Yes – Yes Yes
Pereira et al. (2022) Yes Yes Yes3 Yes Yes
Pranga et al. (2021) – Yes Yes1 – –
Raab et al. (2020) Yes Yes – – –
Schucknecht et al. (2022) Yes Yes Yes2 – –
Schulze-Brüninghoff et al. (2021) Yes – Yes2 – –
Schwieder et al. (2020) Yes – Yes1 – –
Sibanda et al. (2017) Yes Yes Yes5 – –
Sun et al. (2022) Yes – Yes1 – –
Théau et al. (2021) Yes Yes Yes1 – Yes
Thomson et al. (2020) Yes Yes Yes1 – Yes
Togeiro de Alckmin et al. (2021) Yes Yes – Yes –
Togeiro de Alckmin et al. (2022) Yes Yes – – Yes
van der Merwe et al. (2020) Yes – – – Yes
Zeng and Chen (2018) Yes – – – –
Zhou et al. (2019) Yes Yes – Yes –
Note. MAE = mean absolute error. NRMSE = normalized RMSE by (1) mean, (2) range, (3) standard 
deviation, (4) interquartile range, or (5) not specified. R2 = coefficient of determination. RMSE = root mean 
square error
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Feature importance

Seventeen studies provided information on the importance of features. As shown in Table 9, 
many different techniques have been adopted, including variable importance in projection 
(Chong & Jun, 2005) and increase in RMSE (Kuhn, 2008). Six studies reported on the 

Technique No. Studies
Not specified 6 Bretas et al. (2021); Freitas et al. 

(2022); Grüner et al. (2020); Ka-
runaratne et al. (2020); Näsi et 
al. (2018); Sibanda et al. (2017)

Increase in mean square 
error (IncMSE)

3 Schucknecht et al. (2022); 
Schulze-Brüninghoff et al. 
(2021); Schwieder et al. (2020)

Variable importance in the 
projection (VIP)

2 Franceschini et al. (2022); Sun 
et al. (2022)

Decrease in R2 1 Raab et al. (2020)
Feature importances 
(skitlearn)

1 Li et al. (2021)

Gini importance 1 Togeiro de Alckmin et al. (2021)
Increase in RMSE 1 Lussem et al. (2022)
Information gain 
(XGBoost)

1 Dos Reis et al. (2020)

Variable importance mea-
sure (permimp)

1 Pranga et al. (2021)

Table 9 Techniques for feature 
importance reported in the 
included studies (N = 43)

 

Fig. 3 R2 of 41 prediction models by the types of optical sensors used (dots with filling indicate R2 on the 
test set, dots without filling stand for cross-validation)
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importance but lacked a specification of the technique used. In fifteen studies, only features 
based on spectral data were assessed (which is consistent with the focus on spectral vari-
ables in the data collection). In one study, the highest feature importance was assigned to 
canopy height (Schucknecht et al., 2022), and another study found that the relative impor-
tance of three weather features was one third, while three vegetation indices contributed two 
thirds (Bretas et al., 2021).

Discussion

This review examined the adoption of machine-learning techniques for pasture yield predic-
tion using optical sensor data. We analyzed forty-three studies that have been published in 
journals between 2015-01-01 and 2022-10-26. This section discusses the principal findings 
of the review and draws implications for future research and the reporting of studies. We 
also discuss the limitations of our review.

Data collection

For assessing the reliability of a trained prediction model, the number of fields, plots, and 
seasons are important factors that determine the size of the training set. These numbers can 
provide indications of how far the temporal and spatial variability of pasture yields have 
been considered in the data collection. Yet, more than half of the studies were conducted 
in one season, which restricts the training data to specific weather and growing conditions. 
One-third of the studies were limited to data from one field in one season. Even in the latter 
group of studies, the number of sample plots exhibited an enormous span from 21 to 1080. 
The chances that a model will perform similarly in future seasons can be enhanced by train-
ing the model on multi-seasonal data of different fields in which many plots capture the in-
field variability. However, this approach puts a burden on researchers and farmers because 
the required effort for data collection increases significantly.

The restriction of many studies to a single field limits the applicability of the trained 
models to a local level; hence, conclusions about their prediction performance beyond the 
specific field cannot be drawn. Three approaches are feasible to develop global models. 
First, data from a larger number of fields from different regions can be collected to develop 
models from data of greater heterogeneity. Second, data representing biotic and abiotic fac-
tors can be integrated to represent a larger set of growing conditions, thereby incorporating 
these factors into the development. A third possibility is to train a global prediction model 
by integrating multiple local models, i.e., the reuse of training data from different local 
sources (Liu et al., 2022).

The included studies do not inform developers about the minimum size of the training set 
to achieve a reasonable level of prediction performance. One study manipulated the size but 
it found only marginal effects on performance (Rosa et al., 2021). The results of our review 
highlight that little is known about how to specify the size of the training set. This finding 
points to the need for further examination of the relationship between the training set and 
prediction performance.

A common theme in the studies is the application of features derived from optical data, 
namely VIs (29 studies), spectral bands (19), textures (19), and sward height (15). Most 
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studies collected data from at least two different types and considered multiple input vari-
ables, either alternatively or supplementary. The focus is on exploiting the potential of opti-
cal sensing and techniques for transforming image data into variables that are associated 
with plant growth. Therefore, it is not surprising that the number of VIs (1 to 97), spectral 
bands (2 to 2150), and textures (8 to 32) varied considerably across studies. It is noteworthy 
that the most frequent approach for measuring the sward height was UAV, which has substi-
tuted the manual measurement using hand-held devices. Consistent with the large array of 
VIs, spectral bands, textures, and sward height variables collected in combination, the types 
of optical sensors used indicate comprehensive coverage of current sensor technologies.

All other types of input data, such as weather data (5 studies), site data (2), and agro-
nomic data (1) played a minor role. This finding is surprising in view of the fact that such 
data can be obtained with relatively little effort or are already available. For instance, the 
retrieval of weather data is facilitated by online portal and programming interfaces (Jaffrés, 
2019). Historic and current weather data specifically for agricultural purposes are offered by 
companies, national meteorological agencies, and agricultural departments (Farmers Guide, 
2022). Site and agronomic data are increasingly recorded by farmers and processed in digi-
tal farm management information systems. These data represent a so far hardly exploited 
potential for supplementing the spectral data and thus for training even more accurate pre-
diction models.

Data preprocessing

Given the often-high dimensionality of the optical input data used, the objective of data pro-
cessing is to reduce the number of features derived from the input data. This dimensionality 
is foremost due to the large number of VIs and spectral bands in many studies. The results 
of our review provide evidence for the relevance of feature selection, which was present in 
more than half of the studies (it was not relevant for four studies that collected data for a 
single feature). Overall, the techniques used span across filter-based, wrapper-based, and 
embedded techniques, and reflect the variety of techniques available from the ML literature. 
In many studies, the number of features was effectively reduced without increasing the error 
of prediction. For instance, one study started with a set of 20 VIs and eventually selected 
one VI based on correlation analysis (Hamada et al., 2021). Another study considered 2150 
different spectral bands obtained from a hand-held spectroradiometer and then performed 
stepwise regression using backward elimination to arrive at a linear model with only seven 
features (Zeng & Chen, 2018). Similarly, a study by Chiarito et al. (2021) applied a genetic 
algorithm to an initial set of 1024 spectral bands to choose a 13-feature model.

Concerning the final set of features processed in the training phase, our review identi-
fied six studies in which the lack of feature selection led to models trained from at least 26 
features (Grüner et al., 2020; Karunaratne et al., 2020; Lussem et al., 2022; Näsi et al., 2018; 
Pranga et al., 2021; Schucknecht et al., 2022). For these studies, it might be possible that a 
model with fewer features exists that would perform similarly. Therefore, we recommend 
exploring the impact of feature selection on prediction performance when the model was 
trained on a large number of features derived from optical data. For studies that adopt a 
hypothetico-deductive approach to the model development, we suggest determining the rel-
ative importance of each feature and relating the results back to the model development. We 
also note that almost one-fifth of the studies provided no information on the number of fea-
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tures. Presenting complete information on the features included in the trained model would 
help assess the input data that necessarily must be collected and data that can be omitted. 
This information can effectively be reported in a table showing each feature along its unit 
of measurement and definition (Chen et al., 2021). In case the number of features exceeds 
the possibilities of a table, the information can be summarized by indicating the numbers 
per type of sensor as well as the initial and final numbers (Schulze-Brüninghoff et al., 2021).

Model training

The highest adoption rates were found for Random Forests, PLS regression, and OLS 
regression, whereas only four studies used Artificial Neural Networks. It is noteworthy that 
PLS regression was employed in 13 studies. PLS regression is a form of multiple linear 
regression in which the number of initially used independent variables can automatically be 
reduced by an in-built principal component analysis to a smaller set of features. Therefore, 
PLS regression appears specifically relevant for the training from spectral input data, while 
it still assumes linear relationships between the features and the pasture yield. However, 
two studies that compared the performance of PLS and MLR models reported conflicting 
results concerning the R2 metric (Askari et al., 2019; Borra-Serrano et al., 2019). Regarding 
the performance of linear vis-á-vis non-linear models, four studies found better performance 
for non-linear models, but three other studies came to the opposite conclusion. Overall, 
the results of our review suggest no evidence for the superiority of any group of learning 
algorithms.

Forty studies stated the size of the training set, which varied greatly because of the differ-
ent numbers of fields, sampling plots, and seasons between studies. This size must be seen 
in the context of the temporal and spatial variability of the specific pasture under study. If a 
prediction model is learned from too few observations that do not sufficiently represent this 
variability, the model will perform very differently for other test data. Our review identified 
two studies that had very small training sets of 32 (Näsi et al., 2018) and 36 observations 
(Li et al., 2021), respectively. Although no clear guidance is available for determining the 
minimum size required, it can give readers a hint about the reliability of the prediction 
model. Therefore, we suggest reporting complete and unequivocal information on the train-
ing and test sets used. The reporting should always include the absolute and relative num-
bers for each data set. For instance, this information can be visualized in a flow diagram that 
specifies the data processing (Murphy et al., 2022), or provided in a single sentence, such 
as the following: “the complete dataset was first divided into two parts in a 70:30 ratio (231 
observations for the training dataset and 99 observations for the test dataset)” (Da Silva et 
al., 2022, pp. 6039–6040). Moreover, any removal of observations throughout the prepro-
cessing and learning phases should be justified, instead of generally referring to so-called 
outlier removal.

Model evaluation

Insights into the role of specific ML techniques for achieving high performance can be 
obtained from systematic testing of alternative models. The preferred method is the con-
trolled experiment in which one or more factors are manipulated (33 of 43 studies). Our 
review identified feature sets, ML algorithms, and optical sensors as the most frequently 
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used factors. The relevance of feature sets and sensors can be explained by the range of 
input data to capture the temporal and spatial variability of pasture yields.

The evaluation should be conducted in a way that can mitigate the overfitting of a learned 
prediction model. A model is said to overfit if it fits well to the training set but exhibits much 
lower performance on new observations. For instance, it might be possible that a model that 
has been trained on a rich set of sensor data collected from several fields in different seasons 
will perform much worse for a different field or in a future season. To address the overfitting 
problem, cross-validation is appropriate for situations in which the total number of obser-
vations is insufficiently large to divide them into training and test sets. Different types of 
cross-validation are available, and they have been adopted in several ways. With respect to 
k-fold CV, the number of folds ranged between 3 and 20, with no study providing a rationale 
for the number chosen. This deficit also holds for the number of iterations of a CV; itera-
tions were present in seven studies, and they spanned from only 5 to 1000. Leave-one-out 
CV must be regarded as the weakest type of CV because it likely overstates the prediction 
performance for extremely small ratios of new observations, such as 1080:1 in one study 
(Sibanda et al., 2017).

Almost three-fourths of the included studies assessed performance on a separate test set, 
instead of solely relying on cross-validation. Two studies stand out that trained models in 
one season (Togeiro de Alckmin et al., 2022) or two seasons (Murphy et al., 2022) to evalu-
ate them in the subsequent season. Another study performed the evaluation on test data from 
a different field in the same season (de Oliveira et al., 2020). The size of the test set was 
most often stated explicitly in a table or text in the results section. For some articles, the size 
could be derived from a percentage value in relation to the entire data set. In seven other 
studies, the reporting in that respect was incomplete or inconsistent, but we could determine 
the number of observations through counting of dots shown in scatter plots. In a similar vein 
as for the training set, we recommend specifying the test procedure including the absolute 
and relative number of observations, any further data cleansing that led to the removal of 
observations, and the number of runs (if relevant).

Regarding the reporting of performance metrics, our review provides three major find-
ings that have implications for the interpretation of study results. The first finding is the 
relatively high adoption of the R2 (91%), followed by the RMSE (71%). Because R2 is a 
unitless metric, it can in principle help compare the performance of different models that 
predict the same type of pasture yield. Its interpretation is less dependent on the study con-
text compared to the RMSE. The latter metric is more informative for farmers of the specific 
fields from which the observations had been collected and it can help assess how useful the 
prediction model is compared to current means of yield prediction. However, the RMSE 
cannot be used to compare models that have been trained on different observations. In other 
words, any claim about a proposed model that its RMSE would be smaller than that of a 
model proposed in previous research must be taken with great caution. In view of the dual-
ity of metrics that serve very different purposes, we contend that there is no reason not to 
report the R2 and RMSE.

The second finding concerns the heterogeneity and ambiguity of the normalized RMSE. 
Given that the NRMSE was reported in more than half of the studies, this unitless metric 
might be used for comparing the results of similar studies. Unfortunately, we identified at 
least four different definitions, which render the comparison of results impossible. Only 
eleven studies reported the RMSE divided by the mean observed yield. This definition 
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might be regarded as the ‘common’ meaning of the NRMSE, but seven studies provided 
no further details. This practice is questionable because readers might assume a definition 
that is different from the calculation done in the study. To make matters worse, the abstracts 
of 14 studies only indicated the NRMSE but not its exact definition. Moreover, different 
designations were used including NRMSE, nRMSE, relative RMSE (rRMSE), RRMSE, 
RMSE%, and RMSE with a percentage value. Taken together, our finding highlights the 
need for greater clarity in the reporting to avoid misinterpretations of the NRMSE.

The third finding is the lack of consensus regarding the reporting of metrics to compre-
hensively describe prediction performance. The three most commonly used metrics (R2, 
RMSE, and NRMSE) were only reported in one-third of the studies. The frequencies of 
metrics such as MAE (10), Lin’s concordance correlation coefficient (2), Willmott’s d (2), 
and mean average percentage error (1) were negligible, although other literature has high-
lighted the usefulness of these supplementary metrics (Chai & Draxler, 2014; Willmott & 
Matsuura, 2005). Irrespective of the advantages and disadvantages of specific metrics, we 
recommend reporting a larger set of metrics, including but not limited to the R2, RMSE, and 
NRMSE.

Because of the large heterogeneity in the reporting of metrics discussed above, our analy-
sis of prediction performance by the types of optical sensors used was limited to the R2 
metric reported for 41 prediction models from 36 studies. We found that the variability of 
R2 decreased for smaller distance from the pasture sward; thus, the largest variability was 
observed for models trained from satellite data and it decreased considerably for aerial sen-
sors and in-field sensors. These results suggest that the higher spatial and temporal resolu-
tion of in-field imagery can make a difference in the training of effective models.

Although the individual contribution of specific features to prediction performance can 
be determined using feature importance, this was the case in only 17 studies. All but two 
of these studies focused on features derived from spectral data. Therefore, there is yet little 
evidence for the roles of biotic versus abiotic features, including weather, site, and agro-
nomic features. The results of previous studies using optical sensing do not inform us about 
the influence of such features on the accuracy of models. Opportunities exist to examine 
the supplementing roles of non-spectral features, especially of those features for which data 
collection is relatively easy or the data is already available from the farmers.

Collectively, the results of our review also highlight challenges for prediction models 
to become less local and increasingly global. Especially the large differences of pastures 
regarding soil properties, weather conditions, and plant species make the development of 
generalizable prediction model challenging. The collection of data reflecting biotic and abi-
otic factors is not possible by remote sensing alone. To develop more globally applicable 
models, it is necessary to include data from complementary sources (e.g., weather stations, 
soil analysis, and farm management information systems).

Limitations

The results of this review should be understood in light of its limitations. The included stud-
ies varied greatly in the processing of input data and how prediction models were trained. 
Therefore, it was not possible to conduct in-depth comparisons of performance results, 
except for the types of optical sensors used. Another limitation of the review is due to 
the large heterogeneity of the reporting of performance metrics. This heterogeneity limited 
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the number of studies for which performance results could be synthesized; this synthesis 
was only possible for the R2 but not for the NRMSE. Third, although our data collection 
involved three independent coders, all results presented in this review were bound to the 
information reported in the original studies (in a few cases, we contacted the authors to 
clarify the meaning of specific statements though).

Conclusion

This systematic review provides a comprehensive account of the application of ML for the 
prediction of pasture yield using optical sensor data. The results highlight the richness of 
techniques used for the collection and preprocessing of input data as well as the training 
and evaluation of prediction models. Our review also revealed some shortcomings in the 
assessment of prediction performance and the presentation of study designs and results. 
Specifically, we identified deficits in the reporting of feature sets and complete information 
on the training and test data, and a lack of consensus in the reporting of performance met-
rics. We suggest specific recommendations to enhance the uniformity and comparability of 
study results, which can then facilitate the integration of evidence on the role of specific ML 
techniques for accurate and reliable yield predictions of managed pastures.
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